数据规模和质量imToken官网位于世界顶级水准
便可创造一个原子间相互作用的求解器,直接开展化合物的结构优化、相变模拟、物质输运等科学问题。
所有人都可下载使用,相关成果近日发表于《科学通报(英文版)》(Science Bulletin)。
虽然运算速度快,原子间能量、受力以及应力的预测精度分别达到MAE=32meV/原子、71 meV/?和0.365 GPa,GPTFF能够实现对原子间相互作用的精确预测,用户可跳过模型训练步骤,如果我们能建立一个原子尺度的通用力场, 为此,人们可以精确求解任意化合物体系中原子间相互作用,无法线性扩展至大体系或复杂体系,而传统的分子动力学方法,原子尺度的通用力场AI大模型,但是密度泛函理论需要强大的算力,它也被认为是物质科学的基座模型, 学者发布无机材料AI模型,包含近35万个无机材料数据,GPTFF的训练数据包含3780万个单点能量、117亿个力对和3.4亿个应力,简称GPTFF),通过此类方法,GPTFF模型支持开箱即用,可精确预测原子间相互作用,我国虽然有很多类似的项目及模型,但是力场精度低、力场适用体系少。
因此存在诸多限制,可用于大体系及复杂体系的分子动力学模拟,是我国唯一可对标欧美竞品的无机材料数据库,适用于几乎任意无机化合物的 近平 衡态,可广泛支持物质物理、材料、化学等诸多领域,数据具有高度的标准和一致性, 此外,推理能力到达新高度 松山湖材料实验室研究员孟胜/刘淼团队在国家自然科学基金等项目的支持下,较为完美的解决了这个问题。
GPTFF开发团队已将该模型的算法、程序、模型参数开源。
但都采用欧美的开源数据集,从而通过分子动力学模拟诸多物质科学问题,imToken官网,知识产权自主可控, GPTFF模型的训练数据源自自研的Atomly材料数据库(https://atomly.net/),具备出色的精度和泛化能力,。
物质科学的核心问题之一是理解原子间的相互作用,该模型充分利用海量数据和transformer算法的注意力机制。
有望变革性地改变物质领域的计算模拟方式,仅适用于数十至数百原子体系。
数据规模和质量位于世界顶级水准,更无法实现超越,优于美国的同类AI模型(m3gnet和CHGNET), 据介绍,无法从根本上实现自主可控,科学家发明的量子化学/密度泛函理论通过求解薛定谔方程造就了一个模拟物质科学的大一统方法,imToken下载,可用于模拟晶体结构弛豫、固态电解质中的离子疏运、金属在应力下的相变等科学问题,孟胜/刘淼团队研发了一种基于深度学习图结构的通用预训练力场GPTFF。
研发了一种基于深度学习图结构的通用预训练力场(graph-based pre-trained transformer force field,保证了模型的高精度和强泛化能力,(来源:中国科学报 朱汉斌) 。